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C H A P T E R  4

Process Management

4.1 Introduction to Process Management

A process is a program in execution. A process has an address space containing a
mapping of its program’s object code and global variables. It also has a set of ker-
nel resources that it can name and on which it can operate using system calls.
These resources include its credentials, signal state, and its descriptor array that
gives it access to files, pipes, sockets, and devices. Each process has at least one
and possibly many threads that execute its code. Every thread represents a virtual
processor with a full context worth of register state and its own stack mapped into
the address space. Every thread running in the process has a corresponding kernel
thread, with its own kernel stack that represents the user thread when it is execut-
ing in the kernel as a result of a system call, page fault, or signal delivery.

A process must have system resources, such as memory and the underlying
CPU. The kernel supports the illusion of concurrent execution of multiple pro-
cesses by scheduling system resources among the set of processes that are ready to
execute. On a multiprocessor, multiple threads of the same or different processes
may execute concurrently. This chapter describes the composition of a process,
the method that the system uses to switch between the process’s threads, and the
scheduling policy that it uses to promote sharing of the CPU. It also introduces
process creation and termination, and details the signal and process-debugging
facilities.

Tw o months after the developers began the first implementation of the UNIX
operating system, there were two processes: one for each of the terminals of the
PDP-7. At age 10 months, and still on the PDP-7, UNIX had many processes, the
fork operation, and something like the wait system call. A process executed a new
program by reading in a new program on top of itself. The first PDP-11 system
(First Edition UNIX) saw the introduction of exec. All these systems allowed only
one process in memory at a time. When a PDP-11 with memory management (a

89
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90 Chapter 4 Process Management

KS-11) was obtained, the system was changed to permit several processes to
remain in memory simultaneously, to reduce swapping. But this change did not
apply to multiprogramming because disk I/O was synchronous. This state of
affairs persisted into 1972 and the first PDP-11/45 system. True multiprogram-
ming was finally introduced when the system was rewritten in C. Disk I/O for one
process could then proceed while another process ran. The basic structure of
process management in UNIX has not changed since that time [Ritchie, 1988].

The threads of a process operate in either user mode or kernel mode. In user
mode, a thread executes application code with the machine in a nonprivileged pro-
tection mode. When a thread requests services from the operating system with a
system call, it switches into the machine’s privileged protection mode via a pro-
tected mechanism and then operates in kernel mode.

The resources used by a thread are split into two parts. The resources needed
for execution in user mode are defined by the CPU architecture and typically
include the CPU’s general-purpose registers, the program counter, the processor-
status register, and the stack-related registers, as well as the contents of the mem-
ory segments that constitute FreeBSD’s notion of a program (the text, data, shared
library, and stack segments).

Kernel-mode resources include those required by the underlying hardware
such as registers, program counter, and the stack pointer. These resources also
include the state required for the FreeBSD kernel to provide system services for a
thread. This kernel state includes parameters to the current system call, the cur-
rent process’s user identity, scheduling information, and so on. As described in
Section 3.1, the kernel state for each process is divided into several separate data
structures, with two primary structures: the process structure and the thread
structure.

The process structure contains information that must always remain resident
in main memory, along with references to other structures that remain resident,
whereas the thread structure tracks information that needs to be resident only
when the process is executing such as its kernel run-time stack. Process and
thread structures are allocated dynamically as part of process creation and are
freed when the process is destroyed as it exits.

Multiprogramming

FreeBSD supports transparent multiprogramming: the illusion of concurrent execu-
tion of multiple processes or programs. It does so by context switching—that is,
by switching between the execution context of the threads within the same or dif-
ferent processes. A mechanism is also provided for scheduling the execution of
threads—that is, for deciding which one to execute next. Facilities are provided for
ensuring consistent access to data structures that are shared among processes.

Context switching is a hardware-dependent operation whose implementation
is influenced by the underlying hardware facilities. Some architectures provide
machine instructions that save and restore the hardware-execution context of a
thread or an entire process including its virtual-address space. On others, the soft-
ware must collect the hardware state from various registers and save it, then load
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those registers with the new hardware state. All architectures must save and
restore the software state used by the kernel.

Context switching is done frequently, so increasing the speed of a context
switch noticeably decreases time spent in the kernel and provides more time for
execution of user applications. Since most of the work of a context switch is
expended in saving and restoring the operating context of a thread or process,
reducing the amount of the information required for that context is an effective
way to produce faster context switches.

Scheduling

Fair scheduling of threads and processes is an involved task that is dependent on
the types of executable programs and on the goals of the scheduling policy. Pro-
grams are characterized according to the amount of computation and the amount
of I/O that they do. Scheduling policies typically attempt to balance resource uti-
lization against the time that it takes for a program to complete. In FreeBSD’s
default scheduler, which we shall refer to as the timeshare scheduler, a process’s
priority is periodically recalculated based on various parameters, such as the
amount of CPU time it has used, the amount of memory resources it holds or
requires for execution, etc. Some tasks require more precise control over process
execution called real-time scheduling. Real-time scheduling must ensure that
threads finish computing their results by a specified deadline or in a particular
order. The FreeBSD kernel implements real-time scheduling using a separate
queue from the queue used for regular timeshared processes. A process with a
real-time priority is not subject to priority degradation and will only be preempted
by another thread of equal or higher real-time priority. The FreeBSD kernel also
implements a queue of threads running at idle priority. A thread with an idle pri-
ority will run only when no other thread in either the real-time or timeshare-sched-
uled queues is runnable and then only if its idle priority is equal to or greater than
all other runnable idle-priority threads.

The FreeBSD timeshare scheduler uses a priority-based scheduling policy that
is biased to favor interactive programs, such as text editors, over long-running
batch-type jobs. Interactive programs tend to exhibit short bursts of computation
followed by periods of inactivity or I/O. The scheduling policy initially assigns a
high execution priority to each thread and allows that thread to execute for a fixed
time slice. Threads that execute for the duration of their slice have their priority
lowered, whereas threads that give up the CPU (usually because they do I/O) are
allowed to remain at their priority. Threads that are inactive hav e their priority
raised. Jobs that use large amounts of CPU time sink rapidly to a low priority,
whereas interactive jobs that are mostly inactive remain at a high priority so that,
when they are ready to run, they will preempt the long-running lower-priority
jobs. An interactive job, such as a text editor searching for a string, may become
compute-bound briefly and thus get a lower priority, but it will return to a high pri-
ority when it is inactive again while the user thinks about the result.

Some tasks, such as the compilation of a large application, may be done in
many small steps in which each component is compiled in a separate process. No
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92 Chapter 4 Process Management

individual step runs long enough to have its priority degraded, so the compilation
as a whole impacts the interactive programs. To detect and avoid this problem, the
scheduling priority of a child process is propagated back to its parent. When a
new child process is started, it begins running with its parent’s current priority. As
the program that coordinates the compilation (typically make) starts many compi-
lation steps, its priority is dropped because of the CPU-intensive behavior of its
children. Later compilation steps started by make begin running and stay at a
lower priority, which allows higher-priority interactive programs to run in prefer-
ence to them as desired.

The system also needs a scheduling policy to deal with problems that arise
from not having enough main memory to hold the execution contexts of all pro-
cesses that want to execute. The major goal of this scheduling policy is to mini-
mize thrashing—a phenomenon that occurs when memory is in such short supply
that more time is spent in the system handling page faults and scheduling pro-
cesses than in user mode executing application code.

The system must both detect and eliminate thrashing. It detects thrashing by
observing the amount of free memory. When the system has little free memory
and a high rate of new memory requests, it considers itself to be thrashing. The
system reduces thrashing by marking the least recently run process as not being
allowed to run, allowing the pageout daemon to push all the pages associated with
the process to backing store. On most architectures, the kernel also can push to
backing store the kernel stacks of all the threads of the marked process. The effect
of these actions is to cause the process and all its threads to be swapped out (see
Section 6.12). The memory freed by blocking the process can then be distributed
to the remaining processes, which usually can then proceed. If the thrashing con-
tinues, additional processes are selected to be blocked from running until enough
memory becomes available for the remaining processes to run effectively. Eventu-
ally, enough processes complete and free their memory that blocked processes can
resume execution. However, even if there is not enough memory, the blocked pro-
cesses are allowed to resume execution after about 20 seconds. Usually, the
thrashing condition will return, requiring that some other process be selected for
being blocked (or that an administrative action be taken to reduce the load).

4.2 Process State

Every process in the system is assigned a unique identifier termed the process
identifier (PID). PIDs are the common mechanism used by applications and by the
kernel to reference processes. PIDs are used by applications when the latter send a
signal to a process and when receiving the exit status from a deceased process.
Tw o PIDs are of special importance to each process: the PID of the process itself
and the PID of the process’s parent process.

The layout of process state is shown in Figure 4.1. The goal is to support
multiple threads that share an address space and other resources. A thread is the
unit of execution of a process; it requires an address space and other resources, but
it can share many of those resources with other threads. Threads sharing an
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Figure 4.1 Process state.

address space and other resources are scheduled independently and in FreeBSD
can all execute system calls simultaneously. The process state in FreeBSD is
designed to support threads that can select the set of resources to be shared, known
as variable-weight processes [Aral et al., 1989].

Each of the components of process state is placed into separate substructures
for each type of state information. The process structure references all the sub-
structures directly or indirectly. The thread structure contains just the information
needed to run in the kernel: information about scheduling, a stack to use when
running in the kernel, a thread state block (TSB), and other machine-dependent
state. The TSB is defined by the machine architecture; it includes the general-pur-
pose registers, stack pointers, program counter, processor-status word, and mem-
ory-management registers.

The first threading models that were deployed in systems such as FreeBSD 5
and Solaris used an N:M threading model in which many user level threads (N)
were supported by a smaller number of threads (M) that could run in the kernel
[Simpleton, 2008]. The N:M threading model was light-weight but incurred extra
overhead when a user-level thread needed to enter the kernel. The model assumed
that application developers would write server applications in which potentially
thousands of clients would each use a thread, most of which would be idle waiting
for an I/O request.
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94 Chapter 4 Process Management

While many of the early applications using threads, such as file servers,
worked well with the N:M threading model, later applications tended to use pools
of dozens to hundreds of worker threads, most of which would regularly enter the
kernel. The application writers took this approach because they wanted to run on
a wide range of platforms and key platforms like Windows and Linux could not
support tens of thousands of threads. For better efficiency with these applications,
the N:M threading model evolved over time to a 1:1 threading model in which
ev ery user thread is backed by a kernel thread.

Like most other operating systems, FreeBSD has settled on using the POSIX
threading API often referred to as Pthreads. The Pthreads model includes a rich
set of primitives including the creation, scheduling, coordination, signalling, ren-
dezvous, and destruction of threads within a process. In addition, it provides
shared and exclusive locks, semaphores, and condition variables that can be used
to reliably interlock access to data structures being simultaneously accessed by
multiple threads.

In their lightest-weight form, FreeBSD threads share all the process resources
including the PID. When additional parallel computation is needed, a new thread
is created using the pthread_create() library call. The pthread library must keep
track of the user-level stacks being used by each of the threads, since the entire
address space is shared including the area normally used for the stack. Since the
threads all share a single process structure, they hav e only a single PID and thus
show up as a single entry in the ps listing. There is an option to ps that requests it
to list a separate entry for each thread within a process.

Many applications do not wish to share all of a process’s resources. The rfork
system call creates a new process entry that shares a selected set of resources from
its parent. Typically, the signal actions, statistics, and the stack and data parts of
the address space are not shared. Unlike the lightweight thread created by
pthread_create(), the rfork system call associates a PID with each thread that
shows up in a ps listing and that can be manipulated in the same way as any other
process in the system. Processes created by fork, vfork, or rfork initially have just
a single thread structure associated with them. A variant of the rfork system call
is used to emulate the Linux clone() functionality.

The Process Structure

In addition to the references to the substructures, the process entry shown in
Figure 4.1 contains the following categories of information:

• Process identification: the PID and the parent PID

• Signal state: signals pending delivery and summary of signal actions

• Tracing: process tracing information

• Timers: real-time timer and CPU-utilization counters
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The process substructures shown in Figure 4.1 have the following categories of
information:

• Process-group identification: the process group and the session to which the
process belongs

• User credentials: the real, effective, and saved user and group identifiers; creden-
tials are described more fully in Chapter 5

• Memory management: the structure that describes the allocation of virtual
address space used by the process; the virtual-address space and its related struc-
tures are described more fully in Chapter 6

• File descriptors: an array of pointers to file entries indexed by the process’s open
file descriptors; also, the open file flags and current directory

• System call vector: the mapping of system call numbers to actions; in addition to
current and deprecated native FreeBSD executable formats, the kernel can run
binaries compiled for several other UNIX variants such as Linux and System V
Release 4 by providing alternative system call vectors when such environments
are requested

• Resource accounting: the rlimit structures that describe the utilization of the
many resources provided by the system (see Section 3.7)

• Statistics: statistics collected while the process is running that are reported when
it exits and are written to the accounting file; also includes process timers and
profiling information if the latter is being collected

• Signal actions: the action to take when a signal is posted to a process

• Thread structure: the contents of the thread structure (described at the end of this
section)

The state element of the process structure holds the current value of the process
state. The possible state values are shown in Table 4.1. When a process is first

Table 4.1 Process states.

State Description

NEW undergoing process creation

NORMAL thread(s) will be RUNNABLE, SLEEPING, or STOPPED

ZOMBIE undergoing process termination

Section 4.2 Process State 95
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96 Chapter 4 Process Management

created with a fork system call, it is initially marked as NEW. The state is changed
to NORMAL when enough resources are allocated to the process for the latter to
begin execution. From that point onward, a process’s state will be NORMAL until
the process terminates. Its thread(s) will fluctuate among RUNNABLE—that is,
preparing to be or actually executing; SLEEPING—that is, waiting for an event;
and STOPPED—that is, stopped by a signal or the parent process. A deceased
process is marked as ZOMBIE until it has freed its resources and communicated its
termination status to its parent process.

The system organizes process structures into two lists. Process entries are on
the zombproc list if the process is in the ZOMBIE state; otherwise, they are on the
allproc list. The two queues share the same linkage pointers in the process struc-
ture, since the lists are mutually exclusive. Segregating the dead processes from
the live ones reduces the time spent both by the wait system call, which must scan
the zombies for potential candidates to return, and by the scheduler and other
functions that must scan all the potentially runnable processes.

Most threads, except the currently executing thread (or threads if the system is
running on a multiprocessor), are also in one of three queues: a run queue, a sleep
queue, or a turnstile queue. Threads that are in a runnable state are placed on a
run queue, whereas threads that are blocked while awaiting an event are located on
either a turnstile queue or a sleep queue. Stopped threads awaiting an event are
located on a turnstile queue, a sleep queue, or they are on no queue. The run
queues are organized according to thread-scheduling priority and are described in
Section 4.4. The sleep and turnstile queues are organized in a data structure that is
hashed by an event identifier. This organization optimizes finding the sleeping
threads that need to be awakened when a wakeup occurs for an event. The sleep
and turnstile queues are described in Section 4.3.

The p_pptr pointer and related lists (p_children and p_sibling) are used in
locating related processes, as shown in Figure 4.2. When a process spawns a child
process, the child process is added to its parent’s p_children list. The child process
also keeps a backward link to its parent in its p_pptr pointer. If a process has more
than one child process active at a time, the children are linked together through
their p_sibling list entries. In Figure 4.2, process B is a direct descendant of
process A, whereas processes C, D, and E are descendants of process B and are

Figure 4.2 Process-group hierarchy.
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Table 4.2 Thread-scheduling classes.

Range Class Thread type

0 – 47 ITHD bottom-half kernel (interrupt)

48 – 79 REALTIME real-time user

80 – 119 KERN top-half kernel

120 – 223 TIMESHARE time-sharing user

224 – 255 IDLE idle user

siblings of one another. Process B typically would be a shell that started a pipeline
(see Sections 2.4 and 4.8) including processes C, D, and E. Process A probably
would be the system-initialization process init (see Sections 3.1 and 15.4).

CPU time is made available to threads according to their scheduling class and
scheduling priority. As shown in Table 4.2, the FreeBSD kernel has two kernel
and three user scheduling classes. The kernel will always run the thread in the
highest-priority class. Any kernel-interrupt threads will run in preference to any-
thing else followed by any runnable real-time threads. Any top-half-kernel
threads are run in preference to runnable threads in the share and idle classes.
Runnable timeshare threads are run in preference to runnable threads in the idle
class. The priorities of threads in the real-time and idle classes are set by the
applications using the rtprio system call and are never adjusted by the kernel. The
bottom-half interrupt priorities are set when the devices are configured and never
change. The top-half priorities are set based on predefined priorities for each ker-
nel subsystem and never change.

The priorities of threads running in the timeshare class are adjusted by the
kernel based on resource usage and recent CPU utilization. A thread has two
scheduling priorities: one for scheduling user-mode execution and one for sched-
uling kernel-mode execution. The td_user_pri field associated with the thread
structure contains the user-mode scheduling priority, whereas the td_priority field
holds the current scheduling priority. The current priority may be different from
the user-mode priority when the thread is executing in the top half of the kernel.
Priorities range between 0 and 255, with a lower value interpreted as a higher pri-
ority (see Table 4.2). User-mode priorities range from 120 to 255; priorities less
than 120 are used only by real-time threads or when a thread is asleep—that is,
aw aiting an event in the kernel—and immediately after such a thread is awakened.
Threads asleep in the kernel are given a higher priority because they typically hold
shared kernel resources when they awaken. The system wants to run them as
quickly as possible once they get a resource so that they can use the resource and
return it before another thread requests it and gets blocked waiting for it.

When a thread goes to sleep in the kernel, it must specify whether it should be
aw akened and marked runnable if a signal is posted to it. In FreeBSD, a kernel
thread will be awakened by a signal only if it sets the PCATCH flag when it sleeps.
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98 Chapter 4 Process Management

The msleep() interface also handles sleeps limited to a maximum time duration
and the processing of restartable system calls. The msleep() interface includes a
reference to a string describing the event that the thread awaits; this string is exter-
nally visible—for example, in ps. The decision of whether to use an interruptible
sleep depends on how long the thread may be blocked. Because it is complex to
handle signals in the midst of doing some other operation, many sleep requests are
not interruptible; that is, a thread will not be scheduled to run until the event for
which it is waiting occurs. For example, a thread waiting for disk I/O will sleep
with signals blocked.

For quickly occurring events, delaying to handle a signal until after they com-
plete is imperceptible. However, requests that may cause a thread to sleep for a
long period, such as waiting for terminal or network input, must be prepared to
have its sleep interrupted so that the posting of signals is not delayed indefinitely.
Threads that sleep interruptibly may abort their system call because of a signal
arriving before the event for which they are waiting has occurred. To avoid hold-
ing a kernel resource permanently, these threads must check why they hav e been
aw akened. If they were awakened because of a signal, they must release any
resources that they hold. They must then return the error passed back to them by
sleep(), which will be EINTR if the system call is to be aborted after the signal or
ERESTART if it is to be restarted. Occasionally, an event that is supposed to occur
quickly, such as a disk I/O, will get held up because of a hardware failure.
Because the thread is sleeping in the kernel with signals blocked, it will be imper-
vious to any attempts to send it a signal, even a signal that should cause it to exit
unconditionally. The only solution to this problem is to change sleep()s on hard-
ware events that may hang to be interruptible.

In the remainder of this book, we shall always use sleep() when referring to
the routine that puts a thread to sleep, even when one of the mtx_sleep(),
sx_sleep(), rw_sleep(), or t_sleep() interfaces is the one that is being used.

The Thread Structure

The thread structure shown in Figure 4.1 contains the following categories of
information:

• Scheduling: the thread priority, user-mode scheduling priority, recent CPU uti-
lization, and amount of time spent sleeping; the run state of a thread (runnable,
sleeping); additional status flags; if the thread is sleeping, the wait channel, the
identity of the event for which the thread is waiting (see Section 4.3), and a
pointer to a string describing the event

• TSB: the user- and kernel-mode execution states

• Kernel stack: the per-thread execution stack for the kernel

• Machine state: the machine-dependent thread information

Historically, the kernel stack was mapped to a fixed location in the virtual address
space. The reason for using a fixed mapping is that when a parent forks, its run-
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time stack is copied for its child. If the kernel stack is mapped to a fixed address,
the child’s kernel stack is mapped to the same addresses as its parent kernel stack.
Thus, all its internal references, such as frame pointers and stack-variable refer-
ences, work as expected.

On modern architectures with virtual address caches, mapping the kernel
stack to a fixed address is slow and inconvenient. FreeBSD removes this con-
straint by eliminating all but the top call frame from the child’s stack after copying
it from its parent so that it returns directly to user mode, thus avoiding stack copy-
ing and relocation problems.

Every thread that might potentially run must have its stack resident in mem-
ory because one task of its stack is to handle page faults. If it were not resident, it
would page fault when the thread tried to run, and there would be no kernel stack
available to service the page fault. Since a system may have many thousands of
threads, the kernel stacks must be kept small to avoid wasting too much physical
memory. In FreeBSD on the Intel architecture, the kernel stack is limited to two
pages of memory. Implementors must be careful when writing code that executes
in the kernel to avoid using large local variables and deeply nested subroutine calls
to avoid overflowing the run-time stack. As a safety precaution, some architec-
tures leave an inv alid page between the area for the run-time stack and the data
structures that follow it. Thus, overflowing the kernel stack will cause a kernel-
access fault instead of disastrously overwriting other data structures. It would be
possible to simply kill the process that caused the fault and continue running.
However, the cleanup would be difficult because the thread may be holding locks
or be in the middle of modifying some data structure that would be left in an
inconsistent or invalid state. So the FreeBSD kernel panics on a kernel-access
fault because such a fault shows a fundamental design error in the kernel. By pan-
icking and creating a crash dump, the error can usually be pinpointed and cor-
rected.

4.3 Context Switching

The kernel switches among threads in an effort to share the CPU effectively; this
activity is called context switching. When a thread executes for the duration of
its time slice or when it blocks because it requires a resource that is currently
unavailable, the kernel finds another thread to run and context switches to it.
The system can also interrupt the currently executing thread to run a thread trig-
gered by an asynchronous event, such as a device interrupt. Although both sce-
narios involve switching the execution context of the CPU, switching between
threads occurs synchronously with respect to the currently executing thread,
whereas servicing interrupts occurs asynchronously with respect to the current
thread. In addition, interprocess context switches are classified as voluntary or
involuntary. A voluntary context switch occurs when a thread blocks because it
requires a resource that is unavailable. An involuntary context switch takes
place when a thread executes for the duration of its time slice or when the
system identifies a higher-priority thread to run.
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100 Chapter 4 Process Management

Each type of context switching is done through a different interface. Volun-
tary context switching is initiated with a call to the sleep() routine, whereas an
involuntary context switch is forced by direct invocation of the low-level context-
switching mechanism embodied in the mi_switch() and setrunnable() routines.
Asynchronous event handling is triggered by the underlying hardware and is effec-
tively transparent to the system.

Thread State

Context switching between threads requires that both the kernel- and user-mode
context be changed. To simplify this change, the system ensures that all of a
thread’s user-mode state is located in the thread structure while most kernel state
is kept elsewhere. The following conventions apply to this localization:

• Kernel-mode hardware-execution state: Context switching can take place in only
kernel mode. The kernel’s hardware-execution state is defined by the contents of
the TSB that is located in the thread structure.

• User-mode hardware-execution state: When execution is in kernel mode, the
user-mode state of a thread (such as copies of the program counter, stack pointer,
and general registers) always resides on the kernel’s execution stack that is
located in the thread structure. The kernel ensures this location of user-mode
state by requiring that the system-call and trap handlers save the contents of the
user-mode execution context each time that the kernel is entered (see
Section 3.1).

• The process structure: The process structure always remains resident in memory.

• Memory resources: Memory resources of a process are effectively described by
the contents of the memory-management registers located in the TSB and by the
values present in the process and thread structures. As long as the process
remains in memory, these values will remain valid and context switches can be
done without the associated page tables being saved and restored. However,
these values need to be recalculated when the process returns to main memory
after being swapped to secondary storage.

Low-Level Context Switching

The localization of a process’s context in that process’s thread structure permits
the kernel to perform context switching simply by changing the notion of the cur-
rent thread structure and (if necessary) process structure, and restoring the context
described by the TSB within the thread structure (including the mapping of the vir-
tual address space). Whenever a context switch is required, a call to the
mi_switch() routine causes the highest-priority thread to run. The mi_switch()
routine first selects the appropriate thread from the scheduling queues, and then
resumes the selected thread by loading its context from its TSB.
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Voluntary Context Switching

A voluntary context switch occurs whenever a thread must await the availability of
a resource or the arrival of an event. Voluntary context switches happen fre-
quently in normal system operation. In FreeBSD, voluntary context switches are
initiated through a request to obtain a lock that is already held by another thread or
by a call to the sleep() routine. When a thread no longer needs the CPU, it is sus-
pended, awaiting the resource described by a wait channel, and is given a schedul-
ing priority that should be assigned to the thread when that thread is awakened.
This priority does not affect the user-level scheduling priority.

When blocking on a lock, the wait channel is usually the address of the lock.
When blocking for a resource or an event, the wait channel is typically the address
of some data structure that identifies the resource or event for which the thread is
waiting. For example, the address of a disk buffer is used while the thread is wait-
ing for the buffer to be filled. When the buffer is filled, threads sleeping on that
wait channel will be awakened. In addition to the resource addresses that are used
as wait channels, there are some addresses that are used for special purposes:

• When a parent process does a wait system call to collect the termination status of
its children, it must wait for one of those children to exit. Since it cannot know
which of its children will exit first, and since it can sleep on only a single wait
channel, there is a quandary about how to wait for the next of multiple events.
The solution is to have the parent sleep on its own process structure. When a
child exits, it awakens its parent’s process-structure address rather than its own.
Thus, the parent doing the wait will awaken independently of which child
process is the first to exit. Once running, it must scan its list of children to deter-
mine which one exited.

• When a thread does a sigsuspend system call, it does not want to run until it
receives a signal. Thus, it needs to do an interruptible sleep on a wait channel
that will never be awakened. By convention, the address of the signal-actions
structure is given as the wait channel.

A thread may block for a short, medium, or long period of time depending on
the reason that it needs to wait. A short wait occurs when a thread needs to wait
for access to a lock that protects a data structure. A medium wait occurs while a
thread waits for an event that is expected to occur quickly such as waiting for data
to be read from a disk. A long wait occurs when a thread is waiting for an event
that will happen at an indeterminate time in the future such as input from a user.

Short-term waits arise only from a lock request. Short-term locks include
mutexes, read-writer locks, and read-mostly locks. Details on these locks are
given later in this section. A requirement of short-term locks is that they may not
be held while blocking for an event as is done for medium- and long-term locks.
The only reason that a thread holding a short-term lock is not running is that it has
been preempted by a higher-priority thread. It is always possible to get a short-
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102 Chapter 4 Process Management

term lock released by running the thread that holds it and any threads that block
the thread that holds it.

A short-term lock is managed by a turnstile data structure. The turnstile
tracks the current owner of the lock and the list of threads waiting for access to the
lock. Figure 4.3 shows how turnstiles are used to track blocked threads. Across
the top of the figure is a set of hash headers that allow a quick lookup to find a
lock with waiting threads. If a turnstile is found, it provides a pointer to the thread

Figure 4.3 Turnstile structures for blocked threads.
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