Australian

Alan McSeveny
Alan Parker

Diane McSeveny-Foster
Rachel McSeveny

Erika Johnson

What is Australian Signpost Maths NSW?

Australian Signpost Maths NSW is a mathematics activity book series for students from Kindergarten to Year 6. The series has been written to meet the requirements of the Australian Curriculum: Mathematics in NSW.

The components of the series include Student Books, Teacher's Books, Mentals Books and an interactive Website. Teachers can
select an appropriate program for every student from the rich and varied material provided.
The content has been carefully sequenced within each year level and across the series to take into account students' likely mathematical development.

Structure of Australian Signpost Maths NSW

Australian Signpost Maths NSW emphasises the curriculum's syllabus content as well as problem-solving strategies, language development and the use of technology.
To maximise the benefits of the program, the Student Book, Teacher's Book, Mentals Book and Website should be used together.

The sequence of units in the Student Book forms a suggested program for the year. The Teacher's Book also provides lesson plans for each page of the Student Book and blackline masters to assist teachers in implementing the program.

The Student Book presents lessons as a mix of content strands. However, the Contents and Syllabus Overview and Contents Cross-reference pages in the Student Book allow teachers to construct programs based on the specific content strands
(Number and Algebra, Measurement and Geometry, and Statistics and Probability). Progress Tests and remediation records are located in the Teacher's Book and on the website. These tests are also now included in the back of this book.
Each Mentals Book for Years 1 to 6 mixes examples from all strands, reviewing the content of previous units of the Student Book

The innovative Website helps teachers to bring mathematics alive with technology. The website provides interactive maths tools, games and practice opportunities as well as relevant resource masters and worksheets for all year levels. These can be used for whole-class, small-group and individual learning. The website also includes Concept Check-In a new diagnostic screener.

Special Features of Australian Signpost Maths NSW

- Traffic Light system allows students to reflect on their work and highlight any units that they are having trouble understanding. They tick the red for units they feel they still don't understand, and green for those they feel they understand fully.
- Exercises are well graded. New work is reinforced in the Mentals Book.
- The Progress Tests (now also in the back of this book) allow the teacher to discover each student's strengths and weaknesses, and the cross-references direct students to the pages where that work is introduced.
- Concept Check-In diagnostic screener (on the Website) provides a snapshot of the class' conceptual understandings to aid in classroom management. It also allows teachers to measure progress over time.
- Answers are supplied in the Teacher's Book.
- The Dictionary at the beginning of this Student Book will help students to learn the language of mathematics.
- ID Cards (in the Mentals Book, Teacher's Book and Website) review the language of mathematics by asking students to identify common terms, shapes and symbols.
- Important rules and concepts are clearly highlighted.
- Worked examples and explanations are given throughout the Student Book where new ideas are introduced.
- The use of colour makes emphasis clear and is highly motivating.
- Cartoons give instruction and friendly advice.
- Interactive Activities are provided on the website for whole-class, small-group and individual learning.

Australian Signpost Maths NSW Icons

Signpost icons are used throughout the book as cues to the essential nature of exercises and activities, and as a guide to ways of engaging with them. These icons often indicate alternative or more concrete approaches to dealing with concepts.

Structure of NSW Mathematics K-6, Australian Curriculum

The K-6 Mathematics Syllabus content is described in Early Stage 1, Stage 1, Stage 2 and Stage 3. Students develop at different rates, but Stage 1 describes the content expected to be covered in Years 1 and 2.

The Working Mathematically strand pervades each of the other strands.

The syllabus strands and substrands covered in Stage 1 are shown below.

The outcome reference MA1-4NA refers to Mathematics Stage 1, Substrand 4 in the Number and Algebra strand. Relevant syllabus outcomes are shown at the bottom of each Student Book page.

2 Conientis and Sylabus Overview

Contents Cross-reference XDictionary
Diagnostic Tests 148KEY

| Number and Algebra |
| :--- | :--- |
| Measurement and Geometry |
| Statistics and Probability |

Working Mathematically pervades all of the strands as indicated by the 'WM' outcomes.

Page	Unit	Title	Strand	Substrand	Syllabus Outcomes	Suggested Progress
1		Thinking Skills				Term 1
2	1A	Addition Combinations to 10	Number and Algebra	Addition and Subtraction	MA1-1WM, -5NA, -8NA	
3	1B	Subtraction to 10	Number and Algebra	Addition and Subtraction	MA1-1WM, -5NA, -8NA	
4	1 C	One Half	Number and Algebra	Fractions and Decimals	MAT-1WM, -7NA	
5	1D	2D Shapes	Measurement and Geometry	2D Space	MA1-1WM,-15MG	
6	2A	Ordinal Numbers	Number and Algebra	Whole Numbers	MA1-1WM, -2WM, -3WM, -4NA, 13MG	
7	2B	Position Words	Measurement and Geometry	Position	MA1-1WM, -16MG	
8	2 C	Revision of Time	Measurement and Geometry	Tim	MA1-1WM, -13MG	
9	2D	Ordering Capacities	Measurement and Geometry	Volume and Capacity	MA1-1WM, -2WM, -3WM, -11 MG	
10	3A	Counting Patterns	Number and Algebra	Patterns and Algebra	MA1-1WM, -2WM, -3WM, -4NA, -8NA	
11	3B	Counting	Number and Algebra	Whole Numbers	MA1-1WM, -2WM, -3WM, -4NA, -8NA	
12	3C	One Quarter	Number and Algebra	Fractions and Decimals	MA1-1WM, -7NA	
13	3D	Describing 3D Objects	Measurement and Geometry	3D Space	MA1-1WM, -14MG	
14	4A	Addition to 20	Number and Algebra	Addition and Subtraction	MA1-1WM, -2WM, -3WM, -5NA	
15	4B	Addition to 20	Number and Algebra	Addition and Subtraction	MA1-1WM, -2WM, -3WM, -5NA	
16	4 C	Comparing Masses	Measurement and Geometry	Mass	MA1-1WM, -2WM, -3WM, -12MG	
17	4D	Balance Scales	Measurement and Geometry	Mass	MA1-1WM, -2WM, -3WM, -12MG	
18	5A	Modelling Numbers	Number and Algebra	Whole Numbers	MA1-1WM, -2WM, -3WM, -4NA	
19	5B	Doubling and Near Doubling	Number and Algebra	Addition and Subtraction	MA1-1WM, -2WM, -3WM, -5NA	
20	5C	Informal Units of Length	Measurement and Geometry	Length	MA1-1WM, -9MG	
21	5D	Informal Units of Length	Measurement and Geometry	Length	MA1-1WM, -3WM, -9MG	
22	6A	Volume	Measurement and Geometry	Volume and Capacity	MA1-1WM, -2WM, -3WM, -11MG	
23	6B	Groups and Rows	Number and Algebra	Multiplication and Division	MA1-1WM, -2WM, -3WM, -6NA	
24	6C	Analog Time	Measurement and Geometry	Time	MA1-1WM, -2WM, -3WM, -13MG	T1*
25	6D	Analog Time	Measurement and Geometry	Time	MA1-1WM, -2WM, -3WM, -13MG	
26	7A	Sharing	Number and Algebra	Multiplication and Division	MA1-1WM, -2WM, -3WM, -6NA	
27	7B	Sharing	Number and Algebra	Multiplication and Division	MA1-1WM, -2WM, -3WM, -6NA	

[^0]
Number and Algebra

1A) Addition Combinations to 10

(1) Count on from the largest number to complete these.

Add zero and the number does not change.
(2) Finish the number story for each question below.

$\mathrm{b} \leftrightarrows \varrho(\square)$ \square pears $+\square$ pears equals \square pears.

Use objects to model your own addition stories.

(1) You could use counting on or counting back to complete these.

a $6-4=\square$	b $8-3=\square$
d $10-7=\square$	c $9-6=\square$
\mathbf{g}	$7-4=\square$
e $9-5=\square$	f $10-8=\square$

(3) a 8 pegs b) 8 bugs -4 pegs $-\quad-2$ bugs
c 9 cats

- 2 cats
d 10 bears
- 5 bears

(4) a

Discuss word problems for the number sentences on this page.

1C One Half
 200000

(1) Colour $\frac{1}{2}$ of each.

0

e

(2) Draw a line to cuteach object into halves. Colour one half of each.
a

b

C

d

(3) a Colour half of this group of balloons.
b Colour $\frac{1}{2}$ of each shape.

CO

One metre is about two of your steps.

1 metre
1 m

This is a fixed length.
(1) Make a list of objects that are about 1 metre long.
\square
(2) Cut a strip of paper that is 1 metre long. How many of each item would it take to make 1 m ?
How many shoes?
(3) Match each length with the best answer.

Estimate and measure each length to the nearest metre.

Length	Estimate Measure	
length of 10 steps		
length of 20 steps		

Length	Estimate	Measure
classroom length		
classroom width		

30D Metres and Centimetres

- The metre is a standard unit of the metric system.
- One metre is usually about the length of your arm span, or two of your steps.
- 1 metre $(1 \mathrm{~m})=100$ centimetres $(100 \mathrm{~cm})$. $\underset{1 \mathrm{~cm}}{\mathrm{~K}}$ This length is 1 centimetre. 1 cm
(1) Estimate and measure each length to the nearest metre or half metre.

Length	Estimate	Measurement
length of 10 steps	m	
width of the school gate	m	
length of the classroom	m	
distance to the canteen	m	

(2) Match each length with the best answer

width of a door	height of yourself
length of a whiteboard	length of a car
height of a door	width of your desk
length of ten steps	

(3) Measure the following. Show whether each length is less than, about or more than 1 metre.

	Less than 1m	About 1m	More than 1m
shoulder to toe			
standing jump			
height of your teacher			

> Why do we need to use metres and centimetres to measure length?

31A）Multiplication

5 rows of $6=30$
6 rows of $5=30$
so

$$
5 \times 6=6 \times 5
$$

比きたが

（1）

How many are in 3 rows of 4？ How many are in 4 rows of 3？
True or false？
$3 \times 4=4 \times 3$

 a a a a a How many are in 3 rows of 5 ？
How many are in 5 rows of 3 ？ as as as as es True or false？ $3 \times 5=5 \times 3$

0	as
0	as as
	cos
	as as
	os es

 How many are in 4 rows of 10？ \square

How many are

 in 10 rows of 4 ？ \square

（4）True or false？

$$
2 \times 10=10 \times 2 \square 3 \times 6=6 \times 3 \square 8 \times 4=4 \times 8 \square
$$

36C) Half and Quarter Turns

(1) Write an 'H' for the half turns and a 'Q' for the quarter turns.

(2) Continue the quarter turn pattern to finish each design.

(3) Continue the half turn pattern to finish each design.

(4) Describe each turn in Question 1 as either clockwise or anti-clockwise.
\square
C
d

A tessellation is a repeating pattern using a shape that leaves no gaps and does not overlap. Circle the tessellations.

[^0]: *Suggested program for Progress Tests 1 to 4. (See Teacher's Book.)

